How do you find the cube root of #-125/2(1+sqrt3i)#?

2 Answers

#5e^{-{2pi i}/9}, \ 5e^{-{4pi i}/9}, \ 5e^{-{10pi i}/9}#

Explanation:

#-125/2(1+\sqrt3i)#

#=-125/2-{125\sqrt3}/2i#

#=125e^{-{2pi}/3 i}#

Now, cubic roots of #-125/2(1+\sqrt3i)# are given as

#(125e^{-{2pi}/3 i})^{1/3}#

#=5(e^{i(2k\pi-{2pi}/3)})^{1/3}#

#=5e^{i/3(2k\pi-{2pi}/3)}#

#=5e^{i({2k\pi}/{3}-{2pi}/9)}#

Where, #k=0, 1, 2#

Thus, setting #k=0,1, 2 # in above general cubic root, we get three cubic roots of given complex number

#\root[3]{-125/2(1+\sqrt3i)}=5e^{-{2pi i}/9}, \ 5e^{-{4pi i}/9}, \ 5e^{-{10pi i}/9}#

Jun 28, 2018

There are three cube roots,

#-5 (cos (-{5pi}/9) + i sin (-{5pi}/9))#

#-5 (cos (pi/9) + i sin (5pi/9))#

# -5 (cos ({7pi}/9) + i sin ({7pi}/9))#

Explanation:

# z = ( -125/2(1+sqrt{3} i))^(1/3) #

#= (-125)^{1/3} (1/2 + sqrt{3}/2 i )^{1/3}#

#= -5 (cos pi/3 + i sin pi/3)^{1/3}#

#= -5 (cos (pi/3+ 2pi k) + i sin (pi/3 + 2 pi k) )^{1/3} quad# integer #k#

We add the #2pi k# because every complex number has three cube roots and we want to find them all.

De Moivre's theorem works when #n# is a fraction too; it's basically Euler's Formula.

#= -5 (cos (pi/9 + {2pi k}/3) + i sin (pi/9 + {2pi k}/3))#

That's three unique values, given by any three consecutive #k.# These aren't constructible angles so there's no nice expression combining integers, addition, subtraction, multiplication, division and square rooting. We'll just write the three possibilities, #k=-1,0,1.#

#z = -5 (cos (-{5pi}/9) + i sin (-{5pi}/9))# or

#z = -5 (cos (pi/9) + i sin (5pi/9))# or

#z = -5 (cos ({7pi}/9) + i sin ({7pi}/9))#

We can lose the minus sign by adding #pi# to the angles, but I won't bother.