How do you integrate #int x/sqrt(3x^2-6x-8) dx# using trigonometric substitution?

1 Answer
Jun 28, 2018

#intx/sqrt(3x²-6x-8)dx=sqrt11/3cot(csc^(-1)(sqrt(3/11)(x-1)))+1/sqrt3ln(|cot(csc^(-1)(sqrt(3/11)(x-1)))+sqrt(3/11)(x-1)|)+C#, #C in RR#

Explanation:

#intx/sqrt(3x²-6x-8)dx#

#=1/sqrt(3)intx/sqrt(x²-2x-8/3)dx#

#=1/sqrt(3)intx/sqrt((x-1)²-11/3)#

Let #x-1=sqrt(11/3)csc(theta)#

#dx=-sqrt(11/3)cot(theta)csc(theta)d theta#

#1/sqrt(3)intx/sqrt((x-1)²-11/3)=-1/sqrt(3)int((sqrt(11/3)csc(theta)+1)cot(theta)csc(theta))/sqrt(csc²(theta)-1)d theta#
Because #csc²(x)-1=cot²(x)#,
#=-1/sqrt(3)(intsqrt(11/3)csc²(theta)d theta + intcsc(theta)d theta) #
#=sqrt11/3cot(theta)+1/sqrt3ln(|cot(theta)+csc(theta)|)#
Finally, #theta=csc^(-1)(sqrt(3/11)(x-1))#
So:
#intx/sqrt(3x²-6x-8)dx=sqrt11/3cot(csc^(-1)(sqrt(3/11)(x-1)))+1/sqrt3ln(|cot(csc^(-1)(sqrt(3/11)(x-1)))+sqrt(3/11)(x-1)|)+C#, #C in RR#
\0/ here's our answer !