We know that,
#color(blue)((1)1-costheta=2sin^2(theta/2) and sintheta=2sin(theta/2)cos(theta/2)#
#color(violet)((2)arc tan (-alpha)=-arc tanalpha#
#color(green)((3)arc tan(tanphi)=phi ,where,phi in(-pi/2,pi/2)#
Let
#y=arc tan(x-sqrt(1+x^2))#
We take, #color(brown)(x=cottheta=>theta=arc cotx,where,theta in(0,pi)=>theta/2in(0,pi/2)#
So,
#y=arc tan(cottheta-sqrt(1+cot^2theta))to[use : color(red)(1+cot^2theta=csc^2theta]#
#=>y=arc tan(costheta/sintheta-csctheta)#
#=>y=arc tan (costheta/sintheta-1/sintheta)#
#=>y=arc tan((costheta-1)/sintheta)...tocolor(violet)(Apply(2)#
#=>y=arc tan{-((1-costheta)/sintheta)}#
#=>y=-arc tan((1-costheta)/sintheta)...tocolor(blue)(Apply(1)#
#=>y=-arc tan((2sin^2(theta/2))/(2sin(theta/2)cos(theta/2)))#
#=>y=-arc tan((sin(theta/2))/cos(theta/2))#
#=>y=-arc tan(tan(theta/2)).tocolor(green)(Apply(3) ,as ,theta/2in(0,pi/2)#
#=>y=-theta/2#
Subst. back , #color(brown)(theta=arc cotx#
#y=-1/2*arc cotx#
#=>(dy)/(dx)=-1/2*(-1/(1+x^2))#
#=>(dy)/(dx)=1/(2(1+x^2)#