How do you test the improper integral #int (x^2+2x-1)dx# from #[0,oo)# and evaluate if possible?

2 Answers
Jul 6, 2018

The integral is divergent. See explanation.

Explanation:

#int_0^{+oo}(x^2+2x-1)dx=[x^3/3+x^2-x]_0^{+oo}=#

#=lim_{x->+oo}(x^3/3+x^2-x)-[0^3/3+0^2-0]=#

#=lim_{x->+oo}x*(x^2/3+x-1)=(+oo)*(+oo)=+oo#

Jul 6, 2018

See process below

Explanation:

Think about geometrical meaning of integral: "is the area under the curve".

We have a parabola #x^2+2x-1# which representation is

# graph{x^2+2x-1=y [-10, 10, -5, 5]} #

Now, try to evaluate

#int_0^(oo)x^2+2x-1dx=lim_(btooo)int_o^bx^2+2x-1dx=#

#=lim_(btooo)(1/3x^3+x^2-x)_0^b=#

#lim_(btooo)b^3/3+b^2-b=oo#