Find derivative for #x= 1/(1+2r) # , #y=r/(1+r)# ?

2 Answers
Jul 13, 2018

#(dy)/(dx)=-1/2((1+2r)/(1+r))^2 or #

#(dy)/(dx)=-1/2(1+y)^2#

Explanation:

We have ,

#x=1/(1+2r) to(1)and y=r/(1+r)to(2)#

Diff. eqn.(1) w.r. to #color(red)(r# we get

#(dx)/(dr)=-1/(1+2r)^2 d/(dr)(1+2r)=color(blue) (-2/(1+2r)^2to(3)#

Again diff. eqn.(2) w.r. to #color(red)( r # we get

#(dy)/(dr)=((1+r)d/(dr)(r)-rd/(dr)(1+r))/(1+r)^2to[because"Quotient Rule"]#

#=>(dy)/(dr)=((1+r)*1-r*1)/(1+r)^2#

#=>(dy)/(dr)=((1+r-r))/(1+r)^2#

#=>(dy)/(dr)=color(blue)(1/(1+r)^2to(4)#

Using #color(blue)((3) and (4) # we get

#(dy)/(dx)=((dy)/(dr))/((dx)/(dr))=[(1/(1+r)^2)/(-2/(1+2r)^2)]#

#=>(dy)/(dx)=-1/2[(1+2r)^2/(1+r)^2]#

#=>color(green)((dy)/(dx)=-1/2((1+2r)/(1+r))^2#

#=>(dy)/(dx)=-1/2(((1+r)+r)/(1+r))^2#

#=>(dy)/(dx)=-1/2(1+r/(1+r))^2#

#to"from (2),we have ": r/(1+r)=y#

#=>color(green)((dy)/(dx)=-1/2(1+y)^2#

Jul 13, 2018

# dy/dx=-1/2(1+y)^2#.

Explanation:

Given that, #y=r/(1+r), i.e., y/1=r/(1+r)#.

By componendo-dividendo, #(y+1)/(y-1)={r+(r+1)}/{r-(r+1)}#,

# i.e., (y+1)/(y-1)=(2r+1)/-1#.

# rArr (1-y)/(1+y)=1/(2r+1)#,

# or, x=(1-y)/(1+y)#.

Diff.ing w.r.t. #y,# using the Quotient Rule, we get,

#dx/dy={(1+y)d/dy(1-y)-(1-y)d/dy(1+y)}/(1+y)^2#,

#={(1+y)(-1)-(1-y)(1)}/(1+y)^2#.

# rArr dx/dy=-2/(1+y)^2#.

Consequently, #dy/dx=1/(dx/dy)=-1/2(1+y)^2#, as Respected

Maganbhai P. has readily derived!