We have ,
#x=1/(1+2r) to(1)and y=r/(1+r)to(2)#
Diff. eqn.(1) w.r. to #color(red)(r# we get
#(dx)/(dr)=-1/(1+2r)^2 d/(dr)(1+2r)=color(blue)
(-2/(1+2r)^2to(3)#
Again diff. eqn.(2) w.r. to #color(red)( r # we get
#(dy)/(dr)=((1+r)d/(dr)(r)-rd/(dr)(1+r))/(1+r)^2to[because"Quotient Rule"]#
#=>(dy)/(dr)=((1+r)*1-r*1)/(1+r)^2#
#=>(dy)/(dr)=((1+r-r))/(1+r)^2#
#=>(dy)/(dr)=color(blue)(1/(1+r)^2to(4)#
Using #color(blue)((3) and (4) # we get
#(dy)/(dx)=((dy)/(dr))/((dx)/(dr))=[(1/(1+r)^2)/(-2/(1+2r)^2)]#
#=>(dy)/(dx)=-1/2[(1+2r)^2/(1+r)^2]#
#=>color(green)((dy)/(dx)=-1/2((1+2r)/(1+r))^2#
#=>(dy)/(dx)=-1/2(((1+r)+r)/(1+r))^2#
#=>(dy)/(dx)=-1/2(1+r/(1+r))^2#
#to"from (2),we have ": r/(1+r)=y#
#=>color(green)((dy)/(dx)=-1/2(1+y)^2#