What is the integral of #int(x tan^-1 x)/(1+x^2)^(3/2)# ?

#int(x tan^-1 x)/(1+x^2)^(3/2)#

1 Answer
Jul 13, 2018

#(1-tan^-1(x))/sqrt(x^2+1)+C#

Explanation:

#I=int(xtan^-1(x))/(1+x^2)^(3/2)color(red)(dx)#

Let #x=tantheta#, which implies that #dx=sec^2thetad theta#.

Then:

#I=int(tanthetatan^-1(tantheta))/(1+tan^2theta)^(3/2)sec^2thetad theta#

Remember that #1+tan^2theta=sec^2theta#:

#I=int(thetatantheta)/sec^3thetasec^2thetad theta#

#I=intthetatantheta 1/secthetad theta#

#I=intthetasintheta/costhetacosthetad theta#

#I=intthetasinthetad theta#

This looks primed for integration by parts. Let:

#{(u=theta,du=d theta),(dv=sinthetad theta,v=-costheta):}#

Then:

#I=uv-intvdu#

#I=-thetacostheta+intcosthetad theta#

#I=-thetacostheta+sintheta+C#

Remember that #x=tantheta#. Imagine the right triangle associated with this: we must have the leg opposite #theta# being #x# and the adjacent leg being #1#. Then the hypotenuse is #sqrt(x^2+1)#.

Thus #costheta=1/sqrt(x^2+1)# and #sintheta=x/sqrt(x^2+1)#. Moreover, note that #theta=tan^-1(x)#.

#I=-tan^-1(x)/sqrt(x^2+1)+1/sqrt(x^2+1)+C#

#I=(1-tan^-1(x))/sqrt(x^2+1)+C#