Test for convergence #2/(2*3) +2/(3*4) +2/(4*5) +2/(5*6) + ...# ?

1 Answer
Jul 14, 2018

The series converges to #=1#

Explanation:

The series is of the form

#sum_(k=1)^n2/((k+1)(k+2))#

Perform the partial fraction decomposition

#2/((k+1)(k+2))=A/(k+1)+B/(k+2)#

#=(A(k+2)+B(k+1))/((k+1)(k+2))#

The denominators are the same, compare the numerators

#2=(A(k+2)+B(k+1))#

Let #k=-1#, #=>#, #2=A#

Let #k=-2#, #=>#, #2=-B#

Therefore,

#2/((k+1)(k+2))=2/(k+1)-2/(k+2)#

So, this is a telescoping series

#sum_(k=1)^n2/((k+1)(k+2))=sum_(k=1)^n2/(k+1)-sum_(k=1)^n2/(k+2)#

When #k=1#, #=>#, #u_1=2/2-cancel(2/3)#

When #k=2#, #=>#, #u_1=cancel(2/3)-cancel(2/4)#

When #k=3#, #=>#, #u_1=cancel(2/4)-cancel(2/5)#
.
.
.
.
When #k=n-1#, #=>#, #u_(n-1)=cancel(2/n)-cancel(2/(n+1))#

When #k=n#, #=>#, #u_(n)=cancel(2/(n+1))-2/(n+2)#

Adding all the terms

#sum_(k=1)^n2/((k+1)(k+2))=2/2-2/(n+2)=n/(n+2)#

And the limit is

#lim_(n->+oo)sum_(k=1)^n2/((k+1)(k+2))=lim_(n->+oo)n/(n+2)#

#=lim_(n->+oo)1/(1+2/n)#

#=1#

As

#lim_(n->+oo)(2/n)=0#