If #p(x)=x^3-3x^2+2x+5 and p(a)=p(b)=p(c)# then the numerical value of #(2-a)(2-b)(2-c)=#?
2 Answers
If
#(2-a)(2-b)(2-c) = 5-k#
Explanation:
Given:
#p(x) = x^3-3x^2+2x+5#
Suppose:
#p(a) = p(b) = p(c) = k#
where
Then:
#0 = x^3-3x^2+2x+(5-k)#
#color(white)(0) = (x-a)(x-b)(x-c)#
#color(white)(0) = x^3-(a+b+c)x^2+(ab+bc+ca)x-abc#
So:
#{ (a+b+c=3), (ab+bc+ca=2), (abc = k-5) :}#
We find:
#(2-a)(2-b)(2-c) = 8-4(a+b+c)+2(ab+bc+ca)-abc#
#color(white)((2-a)(2-b)(2-c)) = 8-4(3)+2(2)-(k-5)#
#color(white)((2-a)(2-b)(2-c)) = 8-12+4-k+5#
#color(white)((2-a)(2-b)(2-c)) = 5-k#
So if the question should have specified
There seems to be something missing from the question,
Explanation:
Here,
Similarly,
Now , taking
Taking , eqn.
From
Now,
If we take ,
Let us take ,
I agree with @George C. "There seems to be something missing from the question ."