Let #\mathcal{E} = {[[1],[0]][[0],[1]]}# and #\mathcal{B} = {[[3],[1]][[-2],[1]]}# The vector #vecv# relative to #\mathcal{B}# is #[vecv]_\mathcal{B}= [[2],[1]]# . Find #vecv# relative to #\mathcal{E}# #[vecv]_\mathcal{B}#?

1 Answer
Jul 20, 2018

The answer is #=((4),(3))#

Explanation:

The canonical basis is #E={((1),(0)),((0),(1))}#

The other basis is #B={((3),(1)),((-2),(1))}#

The matrix of change of basis from #B# to #E# is

#P=((3,-2),(1,1))#

The vector #[v]_B=((2),(1))# relative to the basis #B# has coordinates

#[v]_E=((3,-2),(1,1))((2),(1))=((4),(3))#

relative to the basis #E#

Verification :

#P^-1=((1/5,2/5),(-1/5,3/5))#

Therefore,

#[v]_B=((1/5,2/5),(-1/5,3/5))((4),(3))=((2),(1))#