If #u_n=sin^n(theta)+cos^n(theta) and (u_3-u_5)/(u_1)=K((u_5-u_7)/(u_3))# then find K?

1 Answer
Jul 21, 2018

# K=1#.

Explanation:

Given that, #u_n=sin^ntheta+cos^ntheta#.

#:. u_3-u_5=(sin^3theta+cos^3theta)-(sin^5theta+cos^5theta)#,

#=(sin^3theta-sin^5theta)+(cos^3theta-cos^5theta)#,

#=sin^3theta(1-sin^2theta)+cos^3theta(1-cos^2theta)#,

#=sin^3thetacos^2theta+cos^3thetasin^2theta#,

#=sin^2thetacos^2theta(sintheta+costheta)#,

#=u_1(sin^2thetacos^2theta)#.

# rArr (u_3-u_5)/u_1=sin^2thetacos^2theta..........(ast^1)#.

Again, #u_5-u_7=sin^5theta+cos^5theta-sin^7theta-cos^7theta#,

#=sin^5theta(1-sin^2theta)+cos^5theta(1-cos^2theta)#,

#=sin^5thetacos^2theta+cos^5thetasin^2theta#,

#=sin^2thetacos^2theta(sin^3theta+cos^3theta)#,

#=u_3(sin^2thetacos^2theta)#.

# rArr (u_5-u_7)/u_3=sin^2thetacos^2theta.........(ast^2)#.

#"Hence, "(u_3-u_5)/u_1=K((u_5-u_7)/u_3), (ast^1) and (ast^2),#

# rArr K=1#.

#color(red)("Enjoy Maths.!")#