Using trigonometric substitution, how do you integrate integral of #x^3 (x^2+4)^(1/2) #?

1 Answer
Jul 21, 2018

#intx^3(x^2+4)^(1/2)dx=1/5(4+x^2)^2sqrt(4+x^2)-4/3(4+x^2)sqrt(4+x^2)#

See explanations below.

Explanation:

#intx^3(x^2+4)^(1/2)dx=intx^3sqrt((x^2+4))dx#

let #x=2tan(theta)#

#dx=2sec(theta)^2d theta#

So :

#intx^3(x^2+4)^(1/2)dx=int16tan(theta)^3sqrt((4tan(theta)^2+4))sec(theta)^2d theta#

#=16inttan(theta)^3sqrt(4(tan(theta)^2+1))sec(theta)^2d theta#

#=32inttan(theta)^3cancel(sqrt(tan(theta)^2+1))^(color(red)(=sec(theta)))sec(theta)^2d theta#

#=32inttan(theta)^3sec(theta)^3d theta#

#=32int(sin(theta)^3)/(cos(theta)^6)d theta#

#=-32int(-sin(theta)sin(theta)^2)/(cos(theta)^6)d theta#

#=-32int(-sin(theta)(1-cos(theta)^2))/(cos(theta)^6)d theta#

let #u=cos(theta)#
#du=-sin(theta)d theta#

So : #32inttan(theta)^3sec(theta)^3d theta=-32int(1-u^2)/(u^6)du#

#=32intu^(-4)du-32intu^(-6)du#

#=32/5u^(-5)-32/3u^(-3)#

#=32/5cos(theta)^(-5)-32/3cos(theta)^-3#

Finally, because #theta=arctan(x/2)# and #cos(arctan(x/2))=2/sqrt(4+x^2)#,

#intx^3(x^2+4)^(1/2)dx=1/5(4+x^2)^2sqrt(4+x^2)-4/3(4+x^2)sqrt(4+x^2)#

\0/ Here's our answer !