Points A and B are at #(4 ,7 )# and #(3 ,9 )#, respectively. Point A is rotated counterclockwise about the origin by #(3pi)/2 # and dilated about point C by a factor of #4 #. If point A is now at point B, what are the coordinates of point C?

2 Answers
Jul 22, 2018

#color(indigo)("Coordinates of "C((x),(y)) = ((19),(-43))#

Explanation:

#A(4,7), B(3,9), "counterclockwise rotation " #(3pi)/2#, "dilation factor" 4#

https://teacher.desmos.com/activitybuilder/custom/566b16af914c731d06ef1953

New coordinates of A after #(3pi)/2# counterclockwise rotation

#A(4,7) rarr A' (7,-4)#

#vec (BC) = (4) vec(A'C)#

#b - c = (4)a' - (4)c#

#c = (4)a' - (3)b#

#color(indigo)(C((x),(y)) = (4)((7),(-4)) - (3)((3),(9)) = ((19),(-43))#

Jul 23, 2018

#C=(25/3,-25/3)#

Explanation:

#"under a counterclockwise rotation about the origin of "(3pi)/2#

#• " a point "(x,y)to(y,-x)#

#A(4,7)toA'(7,-4)" where A' is the image of A"#

#vec(CB)=color(red)(4)vec(CA')#

#ulb-ulc=4(ula'-ulc)#

#ulb-ulc=4ula'-4ulc#

#3ulc=4ula'-ulb#

#color(white)(3ulc)=4((7),(-4))-((3),(9))#

#color(white)(3ulc)=((28),(-16))-((3),(9))=((25),(-25))#

#ulc=1/3((25),(-25))=((25/3),(-25/3))#

#rArrC=(25/3,-25/3)#