How do you graph the quadratic function and identify the vertex and axis of symmetry and x intercepts for #y=1/3(x+4)(x+1)#?

1 Answer
Jul 24, 2018

The vertex is #(-5/2,-3/4)# or #(-2.5,-0.75)#.
The y-intercept is #(0,4/3)# or #(0,~~1.333)#.
The x-intercepts are #(-1,0), (-4,0)#.
Additional point: #(-5,4/3)# or #(-5,~~1.333)#.

Explanation:

Given:

#y=1/3(x+4)(x+1)#

Expand #(x+4)(x+1)#.

#y=1/3(x^2+5x+4)#

Distribute #1/3#.

#y=1/3x^2+5/3x+4/3# is a quadratic equation in standard form:

#y=ax^2+bx+c#,

where:

#a=1/3#, #b=5/3#, and #c=4/3#

The vertex is the maximum or minimum point of the parabola. The formula for the axis of symmetry gives us the x-coordinate of the vertex:

#x=(-b)/(2a)#

#x=(-5/3)/(2*1/3)#

#x=(-5/3)/(2/3)#

#x=-5/3xx3/2#

#x=-15/6#

#x=-5/2# or #2.5#

To find the y-coordinate of the vertex, substitute #-5/2# for #x# and solve for #y#.

#y=1/3(-5/2)^2+5/3(-5/2)+4/3#

#y=1/3(25/4)-25/6+4/3#

#y=25/12-25/6+4/3#

The least common denominator is #12#. Multiply #25/6xx2/2# and #4/3xx4/4# to get equivalent fractions. Since #n/n=1#, the numbers will change but the value of each fraction will not change.

#y=25/12-25/6xxcolor(red)2/color(red)2+4/3xxcolor(blue)4/color(blue)4#

#y=25/12-50/12+16/12#

#y=-9/12#

#y=-3/4# or #-0.75#

The vertex is #(-5/2,-3/4)# or #(-2.5,-0.75)#. Plot this point.

The y-intercept is the value of #y# when #x=0#. Substitute #0# for #x# and solve for #y#.

#y=1/3(0)^2+5/3(0)+4/3#

#y=4/3# or #~~1.333#

The y-intercept is #(0,4/3)# or #(0,~~1.333)#. Plot this point.

The x-intercepts are the values for #x# when #y=0#. Substitute #0# for #y# and solve for #x#.

#0=1/3x^2+5/3x+4/3#

Switch sides.

#1/3x^2+5/3x+4/3=0#

Multiply both sides by #3#.

#x^2+5x+4=0#

Factor #x^2+5x+4#.

#(x+1)(x+4)=0#

Set each binomial to zero and solve.

#x+1=0#

#x=-1#

#x+4=0#

#x=-4#

The x-intercepts are #(-1,0), (-4,0)#. Plot these points.

Additional point: #x=-5#

#x=-5# is the mirror of the x-coordinate of the y-intercept.

Substitute #-5# for #x# and solve for #y#.

#y=1/3(-5)^2+5/3(-5)+4/3#

#y=25/3-25/3+4/3#

Additional point: #(-5,4/3)# or #(-5,~~1.333)#. Plot this point.

Sketch a graph through the points. Do not connect the dots.

graph{y=(x^2)/3+(5x)/3+4/3 [-10, 10, -5, 5]}