If loga/(b-c)=logb/(c-a)=logc/(a-b) then the numerical value of a^a*b^b*c^c=?
2 Answers
Jul 24, 2018
Let
then considering 10 base logarithm we get
-
a=10^(k(b-c) -
b=10^(k(c-a) -
c=10^(k(a-b)
So
-
a^a=10^(k(ab-ca) -
b^b=10^(k(bc-ab) -
c^c=10^(k(ca-bc)
Hence the numerical value of
Jul 24, 2018
Explanation:
Set
Now,
derived!