How do you solve #9( 8t + 1) - 16= t - ( t + 6)#?

2 Answers
Jul 25, 2018

#color(indigo)(t = 1 / 72#

Explanation:

#9(8t + 1) - 16 = t - (t + 6)#

#=> 72t + 9 - 16 = t - t -6#, removing braces.

#=> 72t -cancel t +cancel t = -9 + 16 - 6#, bringing like terms together.

#72t = 1#, simplifying.

#color(indigo)(t = 1 / 72#

Jul 25, 2018

#t = 1/72#

Explanation:

#9(8t+1) - 16 = t - (t+6)#

Simplify both sides by distributing:
#72t + 9 - 16 = t - t - 6#

Combine like terms:
#72t - 7 = -6#

Add #color(blue)7# to both sides:
#72t - 7 quadcolor(blue)(+quad7) = -6 quadcolor(blue)(+quad7)#

#72t = 1#

Divide both sides by #color(blue)(72)#:
#(72t)/color(blue)72 = 1/color(blue)72#

Therefore,
#t = 1/72#

Hope this helps!