What's under the #log# must be #>0#
Therefore,
#x/(x-1)>0#
Let #g(x)=x/(x-1)#
Make a sign chart to solve this inequality
#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaaa)##0##color(white)(aaaaaaaa)##1##color(white)(aaaaaaaa)##+oo#
#color(white)(aaaa)##x##color(white)(aaaaaaaa)##-##color(white)(aaaaa)##+##color(white)(aaaaaaaa)##+#
#color(white)(aaaa)##x-1##color(white)(aaaaa)##-##color(white)(aaaa)##-##color(white)(aaaa)##||##color(white)(aaaa)##+#
#color(white)(aaaa)##g(x)##color(white)(aaaaaa)##+##color(white)(aaaa)##-##color(white)(aaaa)##||##color(white)(aaaa)##+#
Therefore,
#g(x)>0# when #x in (-oo,0) uu(1,+oo)#
The domain is #x in (-oo,0) uu(1,+oo)#
To find the range, let
#y=log_3(x/(x-1))#
So,
By the definition of the logarithm
#x/(x-1)=3^y#
#x=3^y(x-1)#
#x3^y-x=3^(y)#
#x(3^y-1)=3^y#
#x=3^y/(3^y-1)#
The denominator must be #!=0#
#3^y-1!=0#
#=>#, #y!=0#
The range is #y in (-oo,0)uu(0,+oo)#
graph{log(x/(x-1)) [-8.89, 8.886, -4.45, 4.44]}