Use compound-angle formulae to solve cos(x-30)=2cos(x+30), for 0<x<360 ?

1 Answer

#x=30^\circ, 210^\circ#

Explanation:

Given that

#\cos(x-30^\circ)=2\cos(x+30^\circ)#

#\cosx\cos(30^\circ)+\sin x\sinx(30^\circ)=2(\cosx\cos(30^\circ)-\sin x\sinx(30^\circ))#

#\cos x\cdot \sqrt3/2+\sin x\cdot 1/2=2(\cos x\cdot \sqrt3/2-\sin x\cdot 1/2)#

#\sqrt3 \cos x+\sin x\=2\sqrt 3\cos x-2\sin x\#

#\sin x+2\sin x=2\sqrt3\cos x-\sqrt3\cos x#

#3\sin x=\sqrt3\cos x#

#\frac{\sin x}{\cos x}=\sqrt3/3#

#\tan x=1/\sqrt3#

#\tan x=\tan(\pi/6)#

#x=k\pi +\pi/6#

Where #k# is any integer i.e. #k=0, \pm1, \pm2, \pm3, \ldots#

Since, #0 < x< \360^\circ# hence setting #k=0, 1#, we get desired values as follows

#x=30^\circ, 210^\circ#