In radians, what is #arccos-1/2#?

2 Answers

#{2\pi}/3#

Explanation:

Notice: #0\le \cos^{-1}x\le \pi#

#\therefore \cos^{-1}(-1/2)#

#=\pi-\cos^{-1}(1/2)#

#=\pi-\pi/3#

#={2\pi}/3#

Jul 27, 2018

As below.

Explanation:

#theta = arccos (-1/2)#

#cos theta = -1/2 = cos (120) =cos ( (2pi) / 3)^c # or # ((4pi)/3)^c#

Generalizing, #theta = (n pi - ((pi)/3) , (n pi + (pi/3))# where n is an odd integer.