Let #x=2\sin\theta\implies dx=2\cos\theta\ d\theta#
#\therefore \int (x+3)\sqrt{4-x^2}\ dx#
#=\int (2\sin\theta+3)\sqrt{4-4sin^2\theta}\ (2\cos\theta\ d\theta)#
#=\int (2\sin\theta+3)(2\cos\theta)\ (2\cos\theta\ d\theta)#
#=4\int (2\sin\theta+3)\cos^2\theta\ d\theta#
#=4\int (2\cos^2\theta \sin\theta+3\cos^2\theta)\ d\theta#
#=8\int \cos^2\theta \sin\theta\ \d\ theta+12\int \cos^2\theta\ d\theta#
#=-8\int \cos^2\theta(- \sin\theta\ \d\ theta)+12\int \frac{ 1+\cos2\theta}{2}\ d\theta#
#=-8\int \cos^2\theta \ d(\cos\theta)+6\int (1+\cos2\theta)\ d\theta#
#=-8(\frac{\cos^3\theta}{3})+6(\theta+{\sin2\theta}/2)+C#
#=-8/3\cos^3\theta+6\theta+3\sin2\theta+C#
#=6\sin\theta\cos\theta-8/3\cos^3\theta+6\theta+C#
#=6(x/2)\sqrt{1-(x/2)^2}-8/3(1-(x/2)^2)^{3/2}+6\sin^{-1}(x/2)+C#
#=3/2x\sqrt{4-x^2}-1/3(4-x^2)^{3/2}+6\sin^{-1}(x/2)+C#