Here ,
#I=int1/sqrt(-e^(2x)+12e^x-27)dx#
#-e^(2x)+12e^x-27=9-e^(2x)+12e^x-36=9-(e^x-6)^2#
#:.I=int1/sqrt(9-(e^x-6)^2)dx#
Subst. #color(red)(e^x-6=3sinu)=>e^x=6+3sinu=>e^xdx=3cosudu#
#=>dx=(3cosudu)/(6+3sinu) andcolor(red)( sinu=(e^x-6)/3#
So,
#I=int1/sqrt(9-9sin^2u)*(3cosudu)/(6+3sinu)#
#=int1/(3cosu) xx (3cosu du)/(6+3sinu)#
#=int1/(6+3sinu)du=1/3int1/(2+sinu)du#
Subst. #color(blue)(tan(u/2)=t=>sec^2(u/2)*1/2du=dt=>du=(2dt)/(1+tan^2(u/2))#
#=>du=(2dt)/(1+t^2) and sinu=(2t)/(1+t^2)#
#:.I=1/3int1/(2+(2t)/(1+t^2)) xx(2dt)/(1+t^2)#
#=2/3int1/(2+2t^2+2t)dt=1/3int1/(t^2+t+1)dt#
#=1/3int1/(t^2+t+1/4+3/4)dt=1/3int1/((t+1/2)^2+(sqrt3/2)^2)dt#
#=1/3 1/(sqrt3/2)arc tan((t+1/2)/(sqrt3/2))+c#
#:.I=2/(3sqrt3)arctan((2t+1)/sqrt3)+c......to(A)#
Now, #color(blue)(t=tan(u/2)#
#=>t^2=tan^2(u/2)=(1-cosu)/(1+cosu)=(1-cosu)/(1+cosu)
xxcolor(green)((1-cosu)/(1-cosu))#
#=>t^2=(1-cosu)^2/(1-cos^2u)=(1-cosu)^2/sin^2u#
#=>t=(1-cosu)/sinu=(1-sqrt(1-sin^2u))/sinu#
Subst. back #color(red)(sinu=(e^x-6)/3#
#:.t=(1-sqrt(1-((e^x-6)/3)^2))/((e^x-6)/3)#
#:.t=(1-sqrt(9-(e^x-6)^2)/3)/((e^x-6)/3)=(3-sqrt(-e^(2x)+12x-27))/(e^x-6)#
#:.2t+1=(6-2sqrt(-e^(2x)+12e^x-27))/(e^x-6)+1#
#:.2t+1=((6-2sqrt(-e^(2x)+12e^x-27)+e^x-6))/(e^x-6)#
#:.2t+1=(e^x-2sqrt(-e^(2x)+12e^x-27))/(e^x-6)#
So, from #(A)#
#I=2/(3sqrt3)arc tan((e^x-2sqrt(-e^(2x)+12e^x-27))/(sqrt3(e^x-6)))+c#