How do you integrate #int tan^5(2x)sec^2(2x)#?

2 Answers

#\frac{\tan^6(2x)}{12}+C#

Explanation:

Let #\tan (2x)=u\implies 2\sec^2(2x)\ dx=du#

#\therefore \int \tan^5(2x)\sec^2(2x)\ dx#

#=\int u^5\ {du}/{2}#

#=1/2\int u^5\ du#

#=1/2 \cdot u^6/6+C#

#=\frac{\tan^6(2x)}{12}+C#

Jul 27, 2018

#tan^6(2x)/12+c#

Explanation:

We'll have to make a trigonometric substitution here, and we have tangents and secants, so we're looking for either a tangent with an odd power or a secant with an event power.

Since we have both in this case, it does not matter which one we choose for substitution. In this particular case, it seems like using #tan(2x)# would be easier because we already have a #sec^2(2x)#.

So:

#color(red)(u = tan(2x)#
#color(blue)(du = 2sec^2(2x)dx#

Plugging that back into the original integral:

#inttan^5(2x)sec^2(2x)dx#

#int2/2*tan^5(2x)sec^2(2x)dx#

#int1/2*color(red)(tan)^5color(red)((2x))*color(blue)(2sec^2(2x)dx#

#int1/2*color(red)(u)^5color(blue)(du#

#1/12u^6+c#

Substitute #u# back in:

#1/12tan^6(2x)+c# or #tan^6(2x)/12+c#