If a line parallel but nont identical with x-axis cuts the graph of the curve #y=(x-1)/((x-2)(x-3))# at #x=a,x=b# then (a,b)=?

2 Answers
Jul 29, 2018

See explanation.

Explanation:

y-intercept #= - 1/ 6#.

Asymptotes: # larr y = 0 rarr, uarr x = 2 and uarr x = 3#. .

graph{(y (x-2)(x-3)-(x-1))((x+1)^2+(y+1/6)^2-0.03)(x^2+(y+1/6)^2-0.03)=0}.

The line # y = c ne 0#, parallel to x-axis, meets the curve at

just one point #in Q_3#, if #c = - 1/6#,

at #( - 1, - 1/6 )#. See graph.

Above , #y = c > - 1/6# meets the curve again, at

# x = a, b = 1/2( 2.5 +1/c( 1+-sqrt( 1 + 6c + c^2))#.

Jul 31, 2018

#color(red)("In this question, we are asked to find the value of "#

#color(blue)((a-1)(b-1))#

It has been informed to me.

Let a line parallel to #x#-axis be #y=c# which cuts the given curve at #x=aandx=b#

Hence we have

#c=(a-1)/((a-2)(a-3))=(b-1)/((b-2)(b-3))#

#=>(a-1)/((a-2)(a-3))=(b-1)/((b-2)(b-3))#

#=> a^2b-5ab+6b-a^2+5a-6=ab^2-5ab+6a-b^2+5b-6#

#=>ab(a-b)- (a-b)-(a^2-b^2)=0#

#=>ab-1-a-b=0# [Since #a!=b#]

#=>ab-a-b+1-2=0#

#=>a(b-1)-1(b-1)=2#

#=>(a-1)(b-1)=2#