How do you solve #\frac { 4x + 3} { 15} - \frac { 2x - 3} { 9} = \frac { 6x + 4} { 6} - x#?

2 Answers
Aug 5, 2018

#x=3#

Explanation:

Here ,

#(4x+3)/15-(2x-3)/9=(6x+4)/6-x#

#:.(4x+3)/15-(2x-3)/9=(cancel2(3x+2))/cancel6^3-x#

#:.(4x+3)/15-(2x-3)/9=(3x+2)/3-x#

Multiplying each term of eqn. by #45#

#45((4x+3)/15)-45((2x-3)/9)=45((3x+2)/3)-45(x)#

#:.3(4x+3)-5(2x-3)=15(3x+2)-45x#

#:.12x+9-10x+15=cancel(45x)+30-cancel(45x)#

#:.2x+24=30#

Adding #(-24)#both sides

#2x+24+(-24)=30+(-24)#

#:.2x=6#

#:.x=3#

Aug 5, 2018

#x=3#

Explanation:

#(4x+3)/15-(2x-3)/9=(6x+4)/6-x#

#(3*(4x+3)-5*(2x-3))/45=(6x+4-6x)/6#

#((12x+9)-(10x-15))/45=4/6#

#(2x+24)/45=2/3#

#3*(2x+24)=2*45#

#6x+72=90#

#6x=18#

#x=18/6=3#