How do you integrate #f(x)=(x^2+x)/((x^2-1)(x+3)(x-9))# using partial fractions?

2 Answers
Jun 21, 2018

#-1/16*ln|x+3|+3/32ln|x-9|-1/32ln|x-1|+C#

Explanation:

Converting your Integrand into partial fractions we get

#f(x)=-1/(12*(x-1))+3/(32(x-9))-1/(16*(x+3))#
Integrating this we get the result above.

Aug 11, 2018

#int(x^2+x)/((x^2-1)(x+3)(x-9))dx=1/22ln(|x-1|)-5/44ln(|x+3|)+3/44ln(|x-9|)+C#, #C in RR#

Explanation:

#I=int(x^2+x)/((x^2-1)(x+3)(x-9))dx#

#=int(xcancel((x+1)))/(cancel((x+1))(x-1)(x+3)(x-9)dx#

Consider that #x/((x-1)(x+3)(x-9))=A/(x-1)+B/(x+3)+C/(x-9)#

#x=A(x+3)(x-9)+B(x-1)(x-9)+C(x-1)(x+3)#

#x=(A+B+C)x^2+(2C-6A-10B)x-27A+9B-3C#

By identification :

#[(A+B+C),(-6A-10B+2C),(-27A+9B-3C)]=[(0),(1),(0)]#

Solving this system, you will find :

#A=1/22#, #B=-5/44#, #C=3/44#

So:

#I=int((1/22)/(x-1)-(5/44)/(x+3)+(3/44)/(x-9))dx#

#=1/22int1/(x-1)dx-5/44int1/(x+3)dx+3/44int1/(x-9)dx#

#=1/22ln(|x-1|)-5/44ln(|x+3|)+3/44ln(|x-9|)+C#, #C in RR#

\0/ Here's our answer !