How do you integrate #sqrt(4x² + 1)#?
3 Answers
Explanation:
We know that,
Let.
Substitute
Using
Subst. back
Explanation:
Here,
Using Integration by parts:
Explanation:
One method is to use a hyperbolic substitution with
Then:
#int \ sqrt(4x^2+1) \ dx = int \ sqrt(sinh^2 u + 1) \ (dx)/(du) \ du#
#color(white)(int \ sqrt(4x^2+1) \ dx) = int \ sqrt(sinh^2 u + 1) 1/2 cosh u \ du#
#color(white)(int \ sqrt(4x^2+1) \ dx) = int \ sqrt(cosh^2 u) 1/2 cosh u \ du#
#color(white)(int \ sqrt(4x^2+1) \ dx) = int \ 1/2 cosh^2 u \ du#
#color(white)(int \ sqrt(4x^2+1) \ dx) = int \ 1/4 (1 + cosh 2 u) \ du#
#color(white)(int \ sqrt(4x^2+1) \ dx) = 1/4u + 1/8 sinh 2u + C#
#color(white)(int \ sqrt(4x^2+1) \ dx) = 1/4u + 1/4 sinh u cosh u + C#
#color(white)(int \ sqrt(4x^2+1) \ dx) = 1/4 sinh^(-1) x + 1/2x sqrt(4x^2+1) + C#