What is the derivative of #sin(arccos x)#?
3 Answers
Explanation:
Here,
Let ,
Using Chain Rule :
Subst. back
Explanation:
Here,
Explanation:
Note that for
So using
#sin(arccos(x)) = sqrt(1-x^2) = (1-x^2)^(1/2)#
Hence:
#d/(dx) sin(arccos(x)) = d/(dx) (1-x^2)^(1/2)#
#color(white)(d/(dx) sin(arccos(x))) = 1/2 (1-x^2)^(-1/2) * d/(dx) (1-x^2)#
#color(white)(d/(dx) sin(arccos(x))) = 1/2 (1-x^2)^(-1/2) * (-2x)#
#color(white)(d/(dx) sin(arccos(x))) = -x/sqrt(1-x^2)#