Featured Answers

17
Active contributors today

Answer:

#"see explanation"#

Explanation:

#"the equation of the parabola is of the form"#

#•color(white)(x)(y-k)^2=4p(x-h)#

#"this parabola opens horizontally"#

#• " if "4p>0" opens to the right"#

#• " if "4p<0" opens to the left"#

#"vertex "=(h,k)" and "4p=-12rArrp=-3#

#"here "(h,k)=(-3,2)larrcolor(red)" vertex"#

#"since "4p<0" then opens to the left"#

#"the vertex is midway between the focus and directrix"#

#p=-3" is the distance from the vertex to the focus"#

#rArr"focus "=(-3-3,2)=(-6,2)larrcolor(red)" focus"#

#"the directrix is also 3 units from the vertex in the"#
#"opposite side from the focus"#

#rArrx=0larrcolor(red)" equation of directrix"#
graph{(y-2)^2=-12(x+3) [-10, 10, -5, 5]}

Answer:

#(x^4-2x^3-4x^2+2x+3) -: (x^2+2x+1) = x^2-4x+3#, with no remainder.

Explanation:

Set up the long division like this:

#color(magenta)(x^2)+2x+1bar(|"  "color(magenta)(x^4)-2x^3-4x^2+2x+3)#

Divide #color(magenta)(x^4/x^2)#, giving #color(red)(x^2)#; put this quotient above the #x^4#:

#color(white)(x^2+2x+1bar(|"  "color(red)(x^2)#
#x^2+2x+1bar(|"  "x^4-2x^3-4x^2+2x+3)#

Multiply #color(red)(x^2) xx (x^2+2x+1)#, giving #color(blue)(x^4+2x^3+x^2)#; put this product below the #x^4-2x^3-4x^2#:

#color(white)(x^2+2x+1bar(|"  "color(black)(x^2)#
#x^2+2x+1bar(|"  "x^4-2x^3-4x^2+2x+3)#
#color(white)(x^2+2x+1bar(|"  "color(blue)(x^4+2x^3+color(white)(1)x^2))#

Subtract #(x^4-2x^3-4x^2)-(color(blue)(x^4+2x^3+x^2))#, giving #color(orange)(–4x^3-5x^2)#; draw a line under #color(blue)(x^4+2x^3+x^2)# and write this difference below the line:

#color(white)(x^2+2x+1bar(|"  "color(black)(x^2)#
#x^2+2x+1bar(|"  "x^4-2x^3-4x^2+2x+3)#
#color(white)(x^2+2x+1bar(|"  "color(black)(x^4+2x^3+color(white)(1)x^2))#
#color(white)(x^2+2x+1|)bar("  "color(white)(x^4"  ")color(orange)(-4x^3-5x^2)"          ")#

Copy the #color(green)(2x)# from the dividend down below this line:

#color(white)(x^2+2x+1bar(|"  "color(black)(x^2)#
#x^2+2x+1bar(|"  "x^4-2x^3-4x^2+color(green)(2x)+3)#
#color(white)(x^2+2x+1bar(|"  "color(black)(x^4+2x^3+color(white)(1)x^2))#
#color(white)(x^2+2x+1|)bar("  "color(white)(x^4)-4x^3-5x^2" "color(green)(+2x))#

Repeat this process twice, dividing the latest leading term below your line by the leading #x^2# from the divisor:

#color(white)(x^2+2x+1bar(|"  "color(black)(x^2-color(red)(4x))#
#color(magenta)(x^2)+2x+1bar(|"  "x^4-2x^3-4x^2+2x+3)#
#color(white)(x^2+2x+1bar(|"  "color(black)(x^4+2x^3+color(white)(1)x^2))#
#color(white)(x^2+2x+1|)bar("  "color(white)(x^4)-color(magenta)(4x^3)-5x^2+2x)#

...

#color(white)(x^2+2x+1bar(|"  "color(black)(x^2-color(red)(4x))#
#color(red)(x^2+2x+1)bar(|"  "x^4-2x^3-4x^2+2x+3)#
#color(white)(x^2+2x+1bar(|"  "color(black)(x^4+2x^3+color(white)(1)x^2))#
#color(white)(x^2+2x+1|)bar("  "color(white)(x^4)-4x^3-5x^2+2x)#
#color(white)(x^2+2x+1|bar("     "color(blue)(-4x^3-8x^2-4x)))#

...

#color(white)(x^2+2x+1bar(|"  "color(black)(x^2-4x)#
#x^2+2x+1bar(|"  "x^4-2x^3-4x^2+2x+color(green)(3))#
#color(white)(x^2+2x+1bar(|"  "color(black)(x^4+2x^3+color(white)(1)x^2))#
#color(white)(x^2+2x+1|)bar("  "color(white)(x^4)-4x^3-5x^2+2x)#
#color(white)(x^2+2x+1|bar("     "color(black)(-4x^3-8x^2-4x)))#
#color(white)(x^2+2x+1|"        ")bar(color(white)(-4x^3+)color(orange)(3x^2+6x)+color(green)(3))#

...

#color(white)(x^2+2x+1bar(|"  "color(black)(x^2-4x"  "+color(red)3)#
#color(magenta)(x^2)+2x+1bar(|"  "x^4-2x^3-4x^2+2x+3)#
#color(white)(x^2+2x+1bar(|"  "color(black)(x^4+2x^3+color(white)(1)x^2))#
#color(white)(x^2+2x+1|)bar("  "color(white)(x^4)-4x^3-5x^2+2x)#
#color(white)(x^2+2x+1|bar("     "color(black)(-4x^3-8x^2-4x)))#
#color(white)(x^2+2x+1|"        ")bar(color(white)(-4x^3+)color(magenta)(3x^2)+6x+3)#

...

#color(white)(x^2+2x+1bar(|"  "color(black)(x^2-4x"  "+color(red)(3))#
#color(red)(x^2+2x+1)bar(|"  "x^4-2x^3-4x^2+2x+3)#
#color(white)(x^2+2x+1bar(|"  "color(black)(x^4+2x^3+color(white)(1)x^2))#
#color(white)(x^2+2x+1|)bar("  "color(white)(x^4)-4x^3-5x^2+2x)#
#color(white)(x^2+2x+1|bar("     "color(black)(-4x^3-8x^2-4x)))#
#color(white)(x^2+2x+1|"        ")bar(color(white)(-4x^3+)3x^2+6x+3)#
#color(white)(x^2+2x+1|"        "bar(color(blue)("            "3x^2+6x+3)#

...

#color(white)(x^2+2x+1bar(|"  "color(black)(x^2-4x"  "+3)#
#x^2+2x+1bar(|"  "x^4-2x^3-4x^2+2x+3)#
#color(white)(x^2+2x+1bar(|"  "color(black)(x^4+2x^3+color(white)(1)x^2))#
#color(white)(x^2+2x+1|)bar("  "color(white)(x^4)-4x^3-5x^2+2x)#
#color(white)(x^2+2x+1|bar("     "color(black)(-4x^3-8x^2-4x)))#
#color(white)(x^2+2x+1|"        ")bar(color(white)(-4x^3+)3x^2+6x+3)#
#color(white)(x^2+2x+1|"        "bar(color(black)("            "3x^2+6x+3)#
#color(white)(x^2+2x+1|"                       ")bar(color(white)(3x^2+6x+color(orange)0)#

Answer:

The roots are #1, 2, 4, -5/2#

Explanation:

Given:

#2x^4-9x^3-7x^2+54x-40=0#

By the rational roots theorem, any rational roots of this polynomial equation must be expressible in the form #p/q# for integers #p, q# with #p# a divisor of the constant term #-40# and #q# a divisor of the coefficient #2# of the leading term.

That means that the only possible rational roots are:

#+-1/2, +-1, +-2, +-5/2, +-4, +-5, +-8, +-10, +-20, +-40#

There is a shortcut to trying these in that the sum of the coefficients of the given quartic is zero. That is:

#2-9-7+54-40 = 0#

We can deduce that #x=1# is a root and #(x-1)# a factor:

#2x^4-9x^3-7x^2+54x-40 = (x-1)(2x^3-7x^2-14x+40)#

Notice that the ratio of the first and second terms of the remaining cubic is different from that of the third and fourth terms. So this cubic will not factor by grouping.

Let's try one of the possible rational roots, #2#:

#2(color(blue)(2))^3-7(color(blue)(2))^2-14(color(blue)(2))+40 = 16-28-28+40 = 0#

So #x=2# is a root and #(x-2)# a factor:

#2x^3-7x^2-14x+40 = (x-2)(2x^2-3x-20)#

We can factor the remaining quadratic using an AC method:

Find a pair of factors of #AC = 2*20 = 40# which differ by #B=3#.

The pair #8, 5# works.

Use this pair to split the middle term and factor by grouping:

#2x^2-3x-20 = (2x^2-8x)+(5x-20)#

#color(white)(2x^2-3x-20) = 2x(x-4)+5(x-4)#

#color(white)(2x^2-3x-20) = (2x+5)(x-4)#

Hence the remaining zeros are:

#x = -5/2" "# and #" "x = 4#

Answer:

Use the fact that a parabola is the locus of points equidistant from the focus point and the directrix line.

Explanation:

The distance from the directrix, #x =1#, to any point, #(x,y)#, on the parabola is:

#d = x - 1" [1]"#

The distance from the focus, #(-1,0)# to any point, #(x,y)#, on the parabola is:

#d = sqrt((x-(-1))^2+(y-0)^2)#

Simplify:

#d = sqrt((x+1)^2+y^2)" [2]"#

Because the distances must be equal, we can set the right side of equation [1] equal to the right side of equation [2]:

#x -1 = sqrt((x+1)^2+y^2)#

Square both sides:

#(x -1)^2 = (x+1)^2+y^2#

Expand the squares:

#x^2-2x+1 = x^2+2x+1+y^2#

Combine like terms:

#-4x = y^2#

Divide both sides by -4:

#x = -1/4y^2 larr# standard form for a parabola that opens left.

Answer:

See the explanation below

Explanation:

The equation of the hyperbola is

#x^2/a^2-y^2/b^2=1#

Comparing this equation to your equation

#25x^2-16y^2-1=0#

Rearranging your equation

#25x^2-16y^2=1#

#x^2/(1/5)^2-y^2/(1/4)^2=1#

Therefore,

#a=1/5#

#b=1/4#

#c=+-sqrt(a^2+b^2)=+-sqrt(1/25+1/16)=+-sqrt(41)/20#

The center of the hyperbola is #C=(0,0)#

The vertices are #A=(1/5,0)# and #A'=(-1/5,0)#

The foci are #F=(sqrt41/20,0)# and #F'=(-sqrt41/20,0)#

graph{25x^2-16y^2-1=0 [-1.706, 1.712, -0.853, 0.855]}

Answer:

#4ln x + 1/2 ln y - 5 ln z#

Explanation:

There are three properties of logarithms that will be useful here:

#log_a (b/c) = log_a b - log_a c color(white)("aaaaaa")"Quotient Property"#

#log_a (b*c) = log_a b + log_a c color(white)("aaaaaa")"Product Property"#

#log_a (b^c) = c*log_a b color(white)("aaaaaaaaaaaaa")"Exponent Property"#

Begin by using the Quotient Property to split apart the logarithm:

#ln ((x^4 sqrt(y))/(z^5)) = ln (x^4 sqrt(y)) - ln (z^5) #

Now, rewrite the square root as a fractional exponent:

# ln (x^4 sqrt(y)) - ln (z^5) = ln (x^4 * y^(1/2)) - ln (z^5) #

Now use the Product Property to split apart the first logarithm:

# ln (x^4 * y^(1/2)) - ln (z^5) = ln x^4 + ln y^(1/2) - ln z^5 #

Lastly, use the Exponent Property to rewrite the logarithms:

# ln x^4 + ln y^(1/2) - ln z^5 = 4ln x + 1/2 ln y - 5 ln z#

View more
Questions
Ask a question Filters
Loading...
  • Jim G. answered · An hour ago
  • Daniel L. answered · 4 hours ago
  • Eric Sia answered · 10 hours ago
This filter has no results, see all questions.
×
Question type

Use these controls to find questions to answer

Unanswered
Need double-checking
Practice problems
Conceptual questions