#(1/3x - 2/5) + (3/4x^2 + 2/3x - 1/5)#?

2 Answers
Feb 23, 2018

#\frac{3}{4}x^2+x-\frac{3}{5}##\ \ \ # is the simplified expression.

Explanation:

#(\frac{1}{3}x-\frac{2}{5})+(\frac{3}{4}x^2+\frac{2}{3}x-\frac{1}{5})#

Remove the parantheses and group the like terms:

#=\frac{3}{4}x^2+\frac{1}{3}x+\frac{2}{3}x-\frac{2}{5}-\frac{1}{5}#

Add the similar terms #\frac{1}{3}x+\frac{2}{3}x=x# to get:

#=\frac{3}{4}x^2+x-\frac{2}{5}-\frac{1}{5}#

Join the fractions #-\frac{2}{5}-\frac{1}{5}\ =-\frac{3}{5}#

#=\frac{3}{4}x^2+x-\frac{3}{5}#

That's it!

Feb 23, 2018

I assume you mean...

#color(blue)((1/3 x - 2/5) + (3/4 x^2 + 2/3 x - 1/5))#

Well, addition distributes, so add and subtract some fractions:

#= 1/3 x - 2/5 + 3/4 x^2 + 2/3 x - 1/5#

#= 1/3 x - 3/5 + 3/4 x^2 + 2/3 x#

#= cancel(3/3) x - 3/5 + 3/4 x^2#

#= color(blue)(3/4 x^2 + x - 3/5)#