We know that,
#color(red)((1)(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca#
#color(blue)((2)(a+b-c)^2=a^2+b^2+c^2+2ab- 2bc-2ca#
We have to prove,
#(1+sintheta-costheta)^2/(1+sintheta+costheta)^2=(1-costheta)/(1+costheta)#
We take,
#LHS=(1+sintheta-costheta)^2/(1+sintheta+costheta)^2...toApply (1) and (2)#
#color(white)(LHS)=(1+color(brown)(sin^2theta+cos^2theta)+2sintheta-
2costheta-
sinthetacostheta)/(1+color(brown)(sin^2theta+cos^2theta)+2sintheta+2costheta
+sinthetacostheta)#
#color(white)(LHS)=(1+1+2sintheta-2costheta-sinthetacostheta)/
(1+1+2sintheta+2costheta+sinthetacostheta)#
#color(white)(LHS)=(2+2sintheta-2costheta-sinthetacostheta)/
(2+2sintheta+2costheta+sinthetacostheta)#
#color(white)(LHS)=
(2(1+sintheta)-2costheta(1+sintheta))/(2(1+sintheta)+2costheta(1
+sintheta)#
#color(white)(LHS)=(cancel((1+sintheta))(2-2costheta))/(cancel((1+sintheta))
(2+2costheta)#
#color(white)(LHS)=(2-2costheta)/(2+2costheta)#
#color(white)(LHS)=(cancel2(1-costheta))/(cancel2(1+costheta))#
#color(white)(LHS)=(1-costheta)/(1+costheta)#
#LHS=RHS#