2cos^2x-sinx=-1?

1 Answer
May 17, 2018

#pi/6; (5pi)/6; (3pi)/2#

Explanation:

Solve the equation:
#2cos^2 x - sin x + 1 = 0#
Replace in the equation #cos^2 x# by #(1 - sin^2 x)# -->
#2 - 2sin^2 x - sin x - 1 = 0#
Solve this quadratic equation for sin x -->
#-2sin^2 x - sin x + 1 = 0#
Since a - b + c = 0, use shortcut. The 2 real roots are:
sin x = -1 and #sin x = - c/a = 1/2#
a. sin x = - 1
Unit circle gives --> #x = (3pi)/2 + 2kpi#
b. #sin x = 1/2#
Trig table and unit circle give 2 solutions for x -->
#x = pi/6#, and #x = (5pi)/6#