#5sqrt2-6sqrt2+18sqrt3-15sqrt2-6sqrt3+sqrt3#?

2 Answers
Mar 31, 2018

#13sqrt3-16sqrt2#

Explanation:

#color(red)(5sqrt2)-color(red)(6sqrt2)+color(blue)(18sqrt3)-color(red)(15sqrt2)-color(blue)(6sqrt3)+color(blue)(sqrt3)#

Group them accordingly,

#color(blue)(18sqrt3)-color(blue)(6sqrt3)+color(blue)(sqrt3)+color(red)(5sqrt2)-color(red)(6sqrt2)-color(red)(15sqrt2#

Simplify,

#color(blue)(13sqrt3)-color(red)(16sqrt2)#

Mar 31, 2018

#16sqrt(2)+13sqrt(13)#

Explanation:

Given: #5sqrt2-6sqrt2+18sqrt3-15sqrt2-6sqrt3+sqrt3#

Group the square root terms:

#[color(white)(2/2)5sqrt(2)-6sqrt(2)-15sqrt(2)color(white)("d")]+[color(white)(2/2)18sqrt(3)-6sqrt(3)+sqrt(3)color(white)("d")]#

Factor out the square roots

#color(white)("d")sqrt(2)[color(white)(2/2)5-6-15color(white)("d")]color(white)("dddd")+color(white)("dd")sqrt(3)[color(white)(2/2)18-6+1color(white)("d")]#

#color(white)("dddd")-sqrt(2)[color(white)(2/2)16color(white)("d")]color(white)("dddddd")+color(white)(dddd"d")sqrt(3)[color(white)(2/2)13color(white)("d")]#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Writing in the conventional format.

#-16sqrt(2)+13sqrt(13)#