Question #3ee60
1 Answer
Aug 10, 2014
#=-(cos3x)/6-(cosx)/2+c# , where#c# is a constantFor mathematical symbols, visit http://socratic.org/help/symbols
Explanation
#=intsin2xcosxdx# From trigonometric identities,
#sinAcosB=1/2(sin(A+B)+sin(A-B))# Similarly,
#sin2xcosx=1/2(sin3x+sinx)#
#=intsin2xcosxdx=int1/2(sin3x+sinx)dx#
#=1/2intsin3xdx+1/2intsinxdx#
#=1/2((-cos3x)/3)+1/2(-cosx)+c# , where#c# is a constant
#=-(cos3x)/6-(cosx)/2+c# , where#c# is a constant