Question #742ad

1 Answer
Jan 24, 2015

You would need #"0.078 g"#, or #"78 mg"# of #"Na"_2"SO"_4#.

The key factor in solving this problem is the balanced chemical equation for the dissociation of #"Na"_2"SO"_4# in water:

#Na_2SO_(4(aq)) -> 2Na_((aq))^(+) + SO_(4(aq))^(2-)#

Notice that 1 mole of #"Na"_2"SO"_4# produces 2 moles of #"Na"^(+)# ions.

What a #"25"# ppm solution of #"Na"^(+)# ions means is that you must have #"25 mg"#, or #"25" * 10^(-3)"g"#, of sodium ions in #"1 L"#, or #"1000 mL"#, of water. You can determine the moles of sodium ions your solution must contain by using

#"25" * 10^(-3)"g" * ("1 mole Na"^(+))/("23.0 g") = "1.09" * 10^(-3)"moles Na"^(+)#

Since the mole ratio between #"Na"_2"SO"_4# and #"Na"^(+)# is #1:2#, the number of moles of the former you'll need is

#1.09 * 10^(_3)"moles Na"^(+) * ("1 mole Na"_2"SO"_4)/("2 moles Na"^(+)) = 0.55 * 10^(-3) "moles Na"_2"SO"_4#

Therefore, the mass of #"Na"_2"SO"_4# needed is

#"0.55" * 10^(-3) "moles Na"_2"SO"_4 * ("142.0 g")/("1 mole") = 78 * 10^(-3)"g" = "78 mg"#