Question #96976
1 Answer
Explanation:
For differentiable functions
# = lim_(hrarr0) ([f(x+h)g(x+h)]- [f(x)g(x+h)] + [f(x)g(x+h)]- [f(x)g(x)])/h#
# = lim_(hrarr0) ([f(x+h)g(x+h)]- [f(x)g(x+h)])/h + ([f(x)g(x+h)]- [f(x)g(x)])/h#
# = lim_(hrarr0) (f(x+h)- f(x)]/h g(x+h) + f(x)(g(x+h) - g(x))/h#
# = lim_(hrarr0) (f(x+h)- f(x)]/h lim_(hrarr0)g(x+h) + lim_(hrarr0)f(x) lim_(hrarr0)(g(x+h) - g(x))/h#
# = d/dx[f(x)] g(x)+f(x)d/dx[g(x)]#
# = f'(x)g(x)+f(x)g'(x)#
Applied to
# = 1*e^x + x e^x#
In the function for this question, we have a quotient
We'll be using the quotient rule, so we need
# = (-[(e^x+xe^x)(x+e^x) + (1-xe^x)(1+e^x)])/(x+e^x)^2#
Expand and simplify to get: