What is the product of the roots of #ax^2+bx+c = 0" "# where #a != 0# ?
1 Answer
May 15, 2016
Explanation:
Method 1 - Direct multiplication
#(-b-sqrt(b^2-4ac))/(2a) * (-b+sqrt(b^2-4ac))/(2a)#
#=((-b)^2-(sqrt(b^2-4ac))^2)/(4a^2)#
#=(b^2-(b^2-4ac))/(4a^2)#
#=(4ac)/(4a^2)#
#=c/a#
Method 2 - Think about the roots
Call the two values of this expression
Then we have:
#ax^2+bx+c#
#= a(x-r_1)(x-r_2)#
#= a(x^2-(r_1+r_2)x+r_1 r_2)#
#=ax^2-a(r_1 + r_2)x + a r_1 r_2#
Equating coefficients we find:
#c = a r_1 r_2#
So dividing both sides by
#r_1 r_2 = c/a#