Given that#(-sqrt3,1)# is the cartesian coordinate of the point on the terminal side of the angle #theta#.It is in the third quadrant.
Here #x=-sqrt3 and y =1 #
So lrngth of the terminal side
#r=sqrt(x^2+y^2)=sqrt((-sqrt3)+1^2)=2#
#"Here in respect of "theta#
# x->"adjacent"#
#y->"opposite"#
#r->"hypotenuse"#
#sintheta=y/r=1/2#
#costheta=x/r=-sqrt3/2#
#tantheta=y/x=1/(-sqrt3)-1/sqrt3#
#csctheta=r/y=2/1=2#
#sectheta=r/x=-2/sqrt3#
#cottheta=x/y=-sqrt3/1#