Question #8331a

1 Answer
Mar 20, 2016

As below

Explanation:

To Prove #(tanx+cotx)^4=csc^4 x cdot sec^4 x#
LHS #=(tanx+cotx)^4#
write #tanx and cot x# in terms of #sin and cos#
LHS #=(sinx/cosx+cosx/sinx)^4#, simplify
#=> ((sinx xxsinx+cosx xxcosx)/(cosx cdot sinx))^4#
#=> ((sin^2x +cos^2x)/(cosx cdot sinx))^4#, Use Identity #sin^2x +cos^2x=1#
#=> (1/(cosx cdot sinx))^4# by definition of #sec and csc#
#=> (sec x cdotcscx)^4#
#=> sec^4 x cdotcsc^4x =#RHS