# "Sodium azide", NaN_3, is used in air-bags as a source of dinitrogen...?

## Given that the salt decomposes according to the reaction.. $N a {N}_{3} \left(s\right) \rightarrow N a \left(g\right) + \frac{3}{2} {N}_{2} \left(g\right)$ What mass of the salt is required to produce a $100 \cdot L$ of dinitrogen gas at 298*K?

May 15, 2016

#### Answer:

$N a {N}_{3} \left(s\right) \rightarrow N a \left(s\right) + \frac{3}{2} {N}_{2} \left(g\right)$

#### Explanation:

$\frac{3}{2}$ equiv dinitrogen gas are produced per equiv sodium azide.

We need $n \left({N}_{2}\right)$ $=$ $\frac{P V}{R T}$

$= \frac{\frac{755 \cdot m m \cdot H g}{760 \cdot m m \cdot H g \cdot a t {m}^{-} 1} \times 100 \cdot L}{0.0821 \cdot L \cdot a t m \cdot {K}^{-} 1 \cdot m o {l}^{-} 1 \times 298 K}$

$\cong 4 \cdot m o l$

And thus we need a mass of sodium azide, $\frac{2}{3} \times 4 \cdot m o l \times 65.01 \cdot g \cdot m o {l}^{-} 1$ $=$ $173 \cdot g$

Please redo these calculations as I am doing them on paper.