Given #tanx=9/40 and x->"In 3rd quadrant"#
So #x=pi+alpha."where alpha acute angle"#
#:.tanx=9/40=>tan(pi+alpha)=9/40#
#=>tanalpha=9/40#
#color(red)(2x=2pi+2alpha->"in 1st or in 2nd quadrant.")#
#color(blue)("So "sin2x" will be positive.")#
Now
#sin2x=sin(2pi+2alpha)=sin2alpha=(2tanalpha)/(1+tan^2alpha)#
#=(2*9/40)/(1+(9/40)^2)#
#=(2*9/40*40^2)/(40^2+9^2)#
#=720/1681#
Now #x/2=1/2(pi+alpha)=(pi/2+alpha/2)#
#:.tan(x/2)=tan(pi/2+alpha/2)=-cot(alpha/2)#
Again #tanalpha=9/40#
#=>(2tan(alpha/2))/(1-tan^2(alpha/2))=9/40#
If #tan(alpha/2)=a#
then the above relation becomes
#(2a)/(1-a^2)=9/40#
#=>9a^2+80a-9=0#
#=>a=(-80+sqrt(80^2-4*9*(-9)))/(2*9)#
#color(red)([a>0 " since " alpha/2 " acute"])#
#=(-80+82)/18=2/18=1/9#
#:.tan(alpha/2)=1/9#
#=>cot(alpha/2)=9#
Hence #tan(x/2)=-cot(alpha/2)=-9#