If #alpha,beta,gamma# and #delta# are roots of #x^4+9x^2+7x-8=0#, what is the value of #(alpha+beta)(gamma+delta)+alpha*beta+gamma*delta#?

1 Answer
May 26, 2016

#(alpha+beta)(gamma+delta)+alpha*beta+gamma*delta=9#

Explanation:

As #alpha,beta,gamma# and #delta# are roots of #x^4+9x^2+7x-8=0#

We have #(x-alpha)(x-beta)(x-gamma)(x-delta)hArrx^4+9x^2+7x-8=0#

or #x^4-(alpha+beta+gamma+delta)x^3+(alpha*beta+alpha*gamma+alpha*delta+beta*gamma+beta*delta+gamma*delta)x^2-(alpha*beta*gamma+alpha*gamma*delta+alpha*beta*delta+beta*gamma*delta)x+alphabetagammadeltahArrx^4+9x^2+7x-8# (A)

As #(alpha+beta)(gamma+delta)+alpha*beta+gamma*delta=alpha*gamma+alpha*delta+beta*gamma+beta*delta+alpha*beta+gamma*delta#

comparing the coefficients of #x^2# in (A)

#(alpha+beta)(gamma+delta)+alpha*beta+gamma*delta=9#