Question #5adb3

1 Answer
Sep 20, 2016

Alternative I :-

#-{2cosx+ln|cscx-cotx|+C.#

Alternative II :-

#1/4(2x-sin2x)-ln|cscx-cotx|-cosx+C#

Explanation:

Though the Question is not clear, but we solve it by taking #2# possibilities :

Alternative I :-

#int(sin^2x-cos^2x)/sinx dx=int{(sin^2x-(1-sin^2x)}/sinxdx#

#=int(2sin^2x-1)/sinx dx=int{(2sin^2x)/sinx-1/sinx}dx#

#=2intsinxdx-intcscxdx#

#=2(-cosx)-ln|cscx-cotx|#

#=-{2cosx+ln|cscx-cotx|+C.#

Alternative II :-

#int{sin^2x-cos^2x/sinx}dx#

We use the Identity # : sin^2x=(1-cos2x)/2#.

#:. int{sin^2x-cos^2x/sinx}dx#

#=int(1-cos2x)/2dx-int(1-sin^2x)/sinxdx#

#1/2(x-sin(2x)/2)-int(1/sinx-sinx)dx#

#=1/4(2x-sin2x)-intcscxdx+intsinxdx#

#=1/4(2x-sin2x)-ln|cscx-cotx|-cosx+C#

Enjoy Maths.!