Question #c42b1

1 Answer
Jun 12, 2016

We will use the following:

  • #cos(alpha+beta) = cos(alpha)cos(beta)-sin(alpha)sin(beta)#
  • #cos(alpha - beta) = cos(alpha)cos(beta) + sin(alpha)sin(beta)#
  • #cos(45^@) = sin(45^@) = sqrt(2)/2#

With those, we have

#cos(theta+45^@) = cos(theta)cos(45^@)-sin(theta)sin(45^@)#

#=sqrt(2)/2cos(theta)-sqrt(2)/2sin(theta)#

#cos(theta-45^@) = cos(theta)cos(45^@)+sin(theta)sin(45^@)#

#=sqrt(2)/2cos(theta)+sqrt(2)/2sin(theta)#

Adding the two, we get

#cos(theta+45^@)+cos(theta-45^@)#

#=sqrt(2)/2cos(theta)-sqrt(2)/2sin(theta)+sqrt(2)/2cos(theta)+sqrt(2)/2sin(theta)#

#=2(sqrt(2)/2cos(theta))#

#=sqrt(2)cos(theta)#