Using long division solve #(12x^2+9x-7)-:3x#? Algebra Rational Equations and Functions Division of Polynomials 1 Answer Tony B Jun 20, 2016 #4x+3-7/(3x)# Explanation: #(12x^2+9x-7) color(blue)(-:3x)# #" "12x^2+9x-7# #color(magenta)(4x)color(blue)((3x))->color(white)(.) ul(12x^2" ")larr" subtract"# #" "0+9x-7# #color(magenta)(3)color(blue)((3x))->" "ul(color(white)(.)9x" ")larr" subtract"# #" "0color(magenta)(-7""larr" remainder")# ;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #color(magenta)(4x+3-7/(color(blue)(3x)))# Answer link Related questions What is an example of long division of polynomials? How do you do long division of polynomials with remainders? How do you divide #9x^2-16# by #3x+4#? How do you divide #\frac{x^2+2x-5}{x}#? How do you divide #\frac{x^2+3x+6}{x+1}#? How do you divide #\frac{x^4-2x}{8x+24}#? How do you divide: #(4x^2-10x-24)# divide by (2x+3)? How do you divide: #5a^2+6a-9# into #25a^4#? How do you simplify #(3m^22 + 27 mn - 12)/(3m)#? How do you simplify #(25-a^2) / (a^2 +a -30)#? See all questions in Division of Polynomials Impact of this question 1339 views around the world You can reuse this answer Creative Commons License