How do you express #y=5x^2-3x+2# in vertex form?
1 Answer
Jul 4, 2016
Explanation:
#y=5x^2-3x+2#
#=5(x^2-3/5x+2/5)#
#=5(x^2-3/5x+9/100-9/100+2/5)#
#=5(x-3/10)^2+5(2/5-9/100)#
#=5(x-3/10)^2+(40-9)/20#
#=5(x-3/10)^2+31/20#
Bringing the two ends together, we have:
#y = 5(x-3/10)^2+31/20#
which is in vertex form:
#y = a(x-h)^2+k#
with vertex