Question #2daa7
1 Answer
Aug 15, 2017
Explanation:
#costheta<0 # indicating that#theta# could be in the second or third quadrants.
#•color(white)(x)sin^2theta+cos^2theta=1#
#rArrsintheta=+-sqrt(1-cos^2theta)#
#color(white)(rArrsintheta)=+-sqrt(1-(-1/2)^2)#
#color(white)(rArrsintheta)=+-sqrt(3/4)=+-sqrt3/2#
#•color(white)(x)tantheta=sintheta/costheta=+-(sqrt3/2)/(1/2)=+-sqrt3#
#•color(white)(x)cottheta=1/tantheta=+-1/sqrt3#
#•color(white)(x)sectheta=1/costheta=1/(-1/2)=-2#
#•color(white)(x)csctheta=1/sintheta=+-1/(sqrt3/2)=+-2/sqrt3#