Question #23f3c

1 Answer
Aug 20, 2016

Assuming that, by f-1(x) you mean #f^(-1)(x)# (the inverse of #f(x)#) then the answers are #1# and #4#, respectively.

Explanation:

Let's first review the process of finding inverses. It consists of 4 steps:

  1. Change #f(x)# to #y#.
  2. Switch #x# and #y#.
  3. Solve for #y#.
  4. Change #y# to #f^(-1)(x).#

As this method applies to #f(x)=2x+2#, we have:
#y=2x+2=># Changing #f(x)# to #y#
#x=2y+2=># Switching #x# and #y#
#x-2=2y->y=(x-2)/2=># Solving for #y#
#f^(-1)(x)=(x-2)/2=># Changing #y# to #f^(-1)(x)#

The question asks for #f^(-1)(x)# when #x=4#, so:
#f^(-1)(x)=(x-2)/2#
#->f^(-1)(x)=(4-2)/2#
#->f^(-1)(x)=1#

The correct answer, then, is #1#.

We follow the same process for #f(x)=2x-6#:
#y=2x-6#
#x=2y-6#
#2y=x+6#
#y=(x+6)/2->f^(-1)(x)=(x+6)/2#

Now we just plug in #2# for #x# and do the math:
#f^(-1)(x)=(x+6)/2#
#->f^(-1)(x)=(2+6)/2#
#->f^(-1)(x)=4#

The correct answer for this problem is #4#.