Given
#A+B+C=pi#
#=>A/2+B/2+C/2=pi/2#
#=>C/2=pi/2-(A+B)/2#
#LHS=sin(A/2)+sin(B/2)+sin(C/2)#
#=sin(A/2)+sin(B/2)+sin(pi/2-(A+B)/2)#
#=sin(A/2)+sin(B/2)+cos((A+B)/2)#
#=sin(A/2)+sin(B/2)+1-sin^2((A+B)/4)#
#=1+2sin((A+B)/4)cos((A-B)/4)-sin^2((A+B)/4)#
#=1+2sin((A+B)/4)(cos((A-B)/4)-sin((A+B)/4)#
#=1+2sin((A+B)/4)(cos((A-B)/4)-sin((A+B)/4)#
#=1+2sin(pi/4-C/4)(cos((A-B)/4)-cos(pi/2-(A+B)/4))#
#=1+4sin(pi/4-C/4)sin(pi/4-B/4)sin(pi/4-A/4)#
#=1+4sin(pi/4-A/4)sin(pi/4-B/4)sin(pi/4-C/4)#
#=RHS#
Proved