Question #d8fb4

1 Answer
Sep 24, 2016

The Soln. Set#={4, -7/2, (1+-sqrt65)/4}.#

Explanation:

#(2x-7)(x^2-9)(2x+5)-91=0#.

#:.{(2x-7)(x+3)}{(x-3)(2x+5)}-91=0#

#:. (2x^2-7x++6x-21)(2x^2-6x+5x-15)-91=0#

#:. (2x^2-x-21)(2x^2-x-15)-91=0#

#:. (y-21)(y-15)-91=0", where, "y=2x^2-x#

#:. y^2-36y+315-91=0#

#;. y^2-36y+224=0#

#:. ul(y^2-28y)-ul(8y+224=0#

#:. y(y-28)-8(y-28)=0#

#:. (y-28)(y-8)=0#

Returning #y#, (2x^2-x-28)(2x^2-x-8)#.

#:. {ul(2x^2-8x)+ul(7x-28)}(2x^2-x-8)=0#.

#:. {2x(x-4)+7(x-4)}(2x^2-x-8)=0#

#:. (x-4)(2x+7) (2x^2-x-8)=0#

#:. x=4, or, x=-7/2, or, 2x^2-x-8=0#
,
To find the zeroes of #(2x^2-x-8)=0#, we use the Quadratic Formula & get the Zeroes : #(1+-sqrt((-1)^2-4(2)(-8)))/(2*2)=(1+-sqrt65)/4#.

Thus, the Soln. Set#={4, -7/2, (1+-sqrt65)/4}.#

Enjoy Maths.!