Simplify #(125/729)^(-1/3)#?

2 Answers

#(125/729)^(-1/3)=9/5#

Explanation:

We should use the identities #(a^m)^n=a^(mxxn)#, #a^(-m)=1/a^m# and #a^(1/m)=root(m)a#

Hence, #(125/729)^(-1/3)#

= #((5xx5xx5)/(3xx3xx3xx3xx3xx3))^(-1/3)#

= #(5^3/3^6)^(-1/3)#

= #5^((3xx(-1/3)))/3^((6xx(-1/3))#

= #5^(-1)/3^(-2)#

= #(1/5)/(1/9)#

= #1/5xx9/1#

= #9/5#

Oct 3, 2016

#9/5#

Explanation:

Recall: #x^-m = 1/x^m" and " (color(red)(x)/color(blue)(y))^-m = (color(blue)(y)/color(red)(x))^m#

I usually try to get rid of any negative indices first.
Use the second law shown above to do this.

#(125/729)^(-1/3) " = "(729/125)^(1/3)#

It is useful to learn all the powers up to 1000.

You should recognise these values as being cubes.
(#5^3 = 125 and 9^3 = 729#)

Recall: #root3(x) hArr x^(1/3)#

#(729/125)^(1/3) = root3((729/125)) = (root3 729)/(root3 125) = (root3 (9^3))/(root3 (5^3))#

#=9/5#